Glial TLR4 signaling does not contribute to opioid-induced depression of respiration.
نویسندگان
چکیده
Opioids activate glia in the central nervous system in part by activating the toll-like receptor 4 (TLR4)/myeloid differentiation 2 (MD2) complex. TLR4/MD2-mediated activation of glia by opioids compromises their analgesic actions. Glial activation is also hypothesized as pivotal in opioid-mediated reward and tolerance and as a contributor to opioid-mediated respiratory depression. We tested the contribution of TLR4 to opioid-induced respiratory depression using rhythmically active medullary slices that contain the pre-Bötzinger Complex (preBötC, an important site of respiratory rhythm generation) and adult rats in vivo. Injection with DAMGO (μ-opioid receptor agonist; 50 μM) or bath application of DAMGO (500 nM) or fentanyl (1 μM) slowed frequency recorded from XII nerves to 40%, 40%, or 50% of control, respectively. This DAMGO-mediated frequency inhibition was unaffected by preapplication of lipopolysaccharides from Rhodobacter sphaeroides (a TLR4 antagonist, 2,000 ng/ml) or (+)naloxone (1-10 μM, a TLR4-antagonist). Bath application of (-)naloxone (500 nM; a TLR4 and μ-opioid antagonist), however, rapidly reversed the opioid-mediated frequency decrease. We also compared the opioid-induced respiratory depression in slices in vitro in the absence and presence of bath-applied minocycline (an inhibitor of microglial activation) and in slices prepared from mice injected (ip) 18 h earlier with minocycline or saline. Minocycline had no effect on respiratory depression in vitro. Finally, the respiratory depression evoked in anesthetized rats by tail vein infusion of fentanyl was unaffected by subsequent injection of (+)naloxone, but completely reversed by (-)naloxone. These data indicate that neither activation of microglia in preBötC nor TLR4/MD2-activation contribute to opioid-induced respiratory depression.
منابع مشابه
The "toll" of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia.
Glial activation participates in the mediation of pain including neuropathic pain, due to release of neuroexcitatory, proinflammatory products. Glial activation is now known to occur in response to opioids as well. Opioid-induced glial activation opposes opioid analgesia and enhances opioid tolerance, dependence, reward and respiratory depression. Such effects can occur, not via classical opioi...
متن کاملEvidence that opioids may have toll-like receptor 4 and MD-2 effects.
Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unre...
متن کاملP 79: Neuroinflammation: A Common Phenomenon between Chronic Pain and Opioids
Chronic pain is a prevalent and debilitating condition, conveying immense human burden. Suffering from chronic pain is not only caused by painful symptomatology, but also through a wide range of psychopathological and physical consequences, including depression and anxiety disorders, impaired sleep and cognition, cardiovascular morbidity and impaired sexual function, all contributing to diminis...
متن کاملOpioids and Glia: Investigating the Mechanisms through Which Ultra-low Dose Opioid Antagonists Modulate Opioid Tolerance and Hyperalgesia
........................................................................................................................................... ii Co-Authorship ................................................................................................................................ iv Acknowledgements ..............................................................................................
متن کاملOpioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward.
This review will introduce the concept of toll-like receptor (TLR)-mediated glial activation as central to all of the following: neuropathic pain, compromised acute opioid analgesia, and unwanted opioid side effects (tolerance, dependence, and reward). Attenuation of glial activation has previously been demonstrated both to alleviate exaggerated pain states induced by experimental pain models a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 117 8 شماره
صفحات -
تاریخ انتشار 2014